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Governing equations

Entropy eq. (Navier-Stokes)

First law of thermodynamics for open system: Tds = de + pd(1⇢)
Mass and thermal energy (Navier-Stokes) eqs.

⇢
D

Dt
(e) = �pr·u �r·q � ⌧ : ru

D

Dt
(⇢) = �⇢r·u

) Entropy eq. ⇢ D
Dt (s) =

⇢
T

D
Dt (e)�

p
⇢T

D
Dt (⇢)= � 1

Tr·q � 1
T ⌧ : ru

Transport fluxes: ⌧ = �2⌘S and q = ��rT
Conservative form: @t(⇢s) +r·(⇢us) +r·( q

T ) = ⌥
The entropy production rate is nonnegative

⌥ =
⌘

T
S:S+

�

T 2
|rT |2 � 0

In smooth inviscid flows, the entropy is constant along a trajectory
(pathline)

D

Dt
(s) = 0
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Governing equations

Total enthalpy eq.

Total energy E = e + 1
2 |u|

2

⇢
D

Dt
(E ) +r·(pu) +r·q +r·(⌧·u) = 0

Total enthalpy H = h + 1
2 |u|

2 = E + p/⇢

⇢ D
Dt (

p
⇢ ) =

D
Dt (p)�

p
⇢

D
Dt (⇢) = @tp + u·rp + pr·u

= @tp +r·(pu)
)

⇢
D

Dt
(H)� @tp +r·q +r·(⌧·u) = 0

In steady inviscid flows, the total enthalpy is constant along a
trajectory (pathline)

D

Dt
(H) = 0
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Governing equations

Crocco’s eq.

Momentum eq.: @tu + u·ru = �1
⇢rp � 1

⇢r·⌧
Lagrange identity: u·ru = (r⇥ u)⇥ u + 1

2r(u·u)
Vorticity vector: ! = r⇥ u
First law of thermodynamics: dh = Tds + 1

⇢dp ) 1
⇢rp = rh � Trs

) @tu + ! ⇥ u + 1
2r(u·u) = Trs �rh � 1

⇢r·⌧
Crocco’s eq

@tu + ! ⇥ u = Trs �rH � 1
⇢r·⌧

In steady inviscid flows, with constant H (rH = 0), the entropy is
constant in irrotational flows (! = 0)

! ⇥ u = Trs

Conversely, if the flow is isentropic rs = 0, it must be irrotational
unless ! k u everywhere (Beltrami flow)
In smooth inviscid and steady flows, the entropy vanishes on a
pathline: u·rs = 0. This property does not imply that rs = 0
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Governing equations

Rotational flows

Exemples of rotational flow: boundary layer – detached shock

! = r⇥ u 6= 0 ) rs 6= 0
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Governing equations

Irrotational flows

Steady flow

Uniform upstream conditions

Isentropic flow
Inviscid flow (no dissipation)
No discontinuities

) Potential (irrotational) flow
! = r⇥ u = 0
u = r�

Exemples of irrotational flow: attached shock (except shock region),

nozzle, expansion
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Governing equations

Alternative form of continuity eq.

Continuity eq.: D
Dt (⇢) + ⇢r·u = 0

Let us consider a smooth inviscid and steady flow
The material derivative reads D

Dt (⇢) = u·r⇢
The entropy is conserved on a path line: u·rs = 0
By definition of the speed of sound: u·r⇢ = 1

a2 u·rp
Multiplying by u the momentum eq.:

u·rp = �u·(⇢u·ru) = �⇢u ⌦ u : ru

) D
Dt (⇢) = � ⇢

a2 u ⌦ u : ru
Alternative form of the continuity eq. valid for both rotational and
irrotational flows

a2r · u � u ⌦ u : ru = 0
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Method of characteristics

2D potential flow: method of characteristics

Non linear potential eq.

a2r · u � u ⌦ u : ru = 0

Irrotational flow

! = r⇥ u = 0 ) @x2u1 � @x1u2 = 0

System of partial di↵erential eqs.
✓
a2 � u21 �u1u2

0 1

◆
@x1

✓
u1
u2

◆
+

✓
�u1u2 a2 � u22
�1 0

◆
@x2

✓
u1
u2

◆
= 0

)
@x1Q + A @x2Q = 0

with

Q =

✓
u1
u2

◆
A =

1

a2 � u21

✓
�2u1u2 a2 � u22

�(a2 � u21) 0

◆
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Method of characteristics

Eigen vectors and eigen values

Left eigen vector l and eigen value �: l A = �l

Characteristic equation: l (A� �I) = 0 ) |A� �I| = 0

(a2 � u21) �
2 + 2u1u2 �+ a2 � u22 = 0

Discriminant: � = a2(u21 + u22 � a2)
M > 1 ! � > 0 : hyperbolic eq.
M = 1 ! � = 0 : parabolic eq.
M < 1 ! � < 0 : elliptic eq.

For M > 1 (" = ±)

Real eigen values: �" =
u1u2/a

2+"
p
M2�1

u2
1/a

2�1

Eigen vectors: (l11 l12) A = �+(l11 l12) and (l21 l22) A = ��(l21 l22)
l12/l11 = (�+ � a11)/a21 and l22/l21 = (��a11)/a21

After some algebra, one gets

l12/l11 = �� and l22/l21 = �+
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Method of characteristics

Physical interpretation of the characteristic lines

Change of variables

⇢
u1/a = M cos ✓
u2/a = M sin ✓

�" =
M2 sin ✓ cos ✓ + "

p
M2 � 1

M2 cos2 ✓ � 1

=
M2 tan ✓ + "

p
M2 � 1(1 + tan2 ✓)

("
p
M2 � 1)2 � tan2 ✓

: 1/ cos2 ✓ = 1 + tan2 ✓

=
("
p
M2 � 1 tan ✓ + 1)("

p
M2 � 1 + tan ✓)

("
p
M2 � 1� tan ✓)("

p
M2 � 1 + tan ✓)

=
tan ✓ + "/

p
M2 � 1

1� " tan ✓/
p
M2 � 1

=
tan ✓ + tan("µ)

1� tan ✓ tan("µ)
: sinµ = 1/M, tanµ = 1/

p
M2 � 1

) �" = tan(✓ + "µ)

with ✓ positive in the counterclockwise direction
Limits: limM!1 µ = 0 and limM!1+ µ = ⇡/2
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Method of characteristics

tan�" = �" = tan(✓ + "µ)

The streamline at one point makes an angle ✓ with the x1 axis

Two characteristics are passing at this point: one at the angle µ above
the streamline, and the other at the angle µ below the streamline

The characteristic lines are Mach lines

No discontinuity in the velocity or any other fluid property along the
characteristics, Mach lines are patching lines for continuous flows

Magin (AERO 0033–1) Aerothermodynamics 2016-2017 12 / 26



Method of characteristics

Characteristic eqs. for M > 1

Using LA = ⇤L with ⇤ =

✓
�+ 0
0 ��

◆
and L =

✓
l11 l12
l21 l22

◆

The system of partial di↵erential eqs. reads

L@x1Q + LA @x2Q = 0 ) L@x1Q + ⇤L @x2Q = 0

After explicit calculation
⇢
l11(@x1 + �+@x2)u1 + l12(@x1 + �+@x2)u2 = 0
l21(@x1 + ��@x2)u1 + l22(@x1 + ��@x2)u2 = 0

The terms between ( ) can be interpreted as directional derivatives in
the x1, x2 plane. Using the characteristic directions s" = (cos�", sin�")

(
l11

d
ds+

u1 + l12
d

ds+
u2 = 0

l21
d

ds�
u1 + l22

d
ds�

u2 = 0
)

(
l11 + l12

du2
du1

= 0 on s+

l21 + l22
du2
du1

= 0 on s�

one obtains a system of ordinary di↵erential eqs. in the u1, u2 plane
(hodograph plane) along the directions s+ and s�
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Method of characteristics

Solution method

Cauchy problem: u1 and u2 are given on an arc � and one wishes to
compute the flow downstream of that arc

Discretized solution
The characteristic slope direction �+ and �� can be computed at each point of arc
�, in particular �+|A = tan�+|A and ��|B = tan��|B
The position of point P is defined by the intersection of the characteristic lines
approximately numerically by their tangent at A and B
The velocity components at P can be computed by integrating (numerically) the
characteristic equations(

u1|P �u1|A
�s+

+ ��|A u2|P �u2|A
�s+

= 0 on s+
u1|P �u1|B

�s�
+ �+|B u2|P �u2|B

�s�
= 0 on s�
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Method of characteristics

Zone of influence and zone of silence
Consider left- and right-running characteristics through point P

Zone of influence for P: area between the two downstream
characteristics. This region is influenced by any disturbances or
information at point P
Zone of silence for P: all points outside the zone of influence will not
be a↵ected by disturbances or information at P
Zone of dependence for P: area between the two upstream
characteristics. Properties at point P depend on any disturbances or
information in the flow within this upstream region

In steady supersonic flow, disturbances do not propagate upstream
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Method of characteristics

Riemann invariants

The characteristic eqs. in the hodograph plane

(
1 + ��

du2
du1

= 0 on s+

1 + �+
du2
du1

= 0 on s�

have only one solution through the point of the plane
These solutions are called Riemann invariants

⇢
F1(u1, u2) = constant on s+
F2(u1, u2) = constant on s�

After change of variables (u1, u2) ! (M, ✓), one obtains

⇢
⌫(M)� ✓ = constant on s+
⌫(M) + ✓ = constant on s�

with the the Prandtl-Meyer function ⌫(M) introduced in lecture 2
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Method of characteristics

Proof

Change of variables

⇢
u1 = u cos ✓ ) du1 = cos ✓du � u sin ✓d✓
u2 = u sin ✓ ) du2 = sin ✓du + u cos ✓d✓

du1 + ��"du2 = 0

(cos ✓ + ��" sin ✓)du + u(� sin ✓ + ��" cos ✓)d✓ = 0

(cos(✓ � "µ) cos ✓ + sin(✓ � "µ) sin ✓)du

+u(� cos(✓ � "µ) sin ✓ + sin(✓ � "µ) cos ✓)d✓ = 0

cotµ
1

u
du � "d✓ = 0

Change of variable:

8
><

>:

H = cpT + 1
2
u2 = ( 1

(��1)M2 + 1
2
)u2

dH = ( 1
(��1)M2 + 1

2
)2udu � 2

��1
u2 dM

M3

= 0

g(M)dM � "d✓ = 0 : with g(M) =

p
M2 � 1

M

1

1 + ��1
2

M2

⌫(M)� "✓ = constant : with ⌫(M) =

Z M

0
g(M0) dM0
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Method of characteristics

Prandtl-Meyer expansion

Let us consider an incoming flow following a curved (convex) surface

It is possible to compute exactly the flow quantities at each point P
of the wall (the angle ✓ is negative in the clockwise direction)

On s� emanating from the uniform incoming flow region
⌫(MP ) + ✓P = ⌫(MA)

For any point Q on s+ emanating from point P
⇢
⌫(MQ)� ✓Q = ⌫(MP )� ✓P
⌫(MQ) + ✓Q = ⌫(MA) = ⌫(MP ) + ✓P

! ⌫(MQ) = ⌫(MP ) and ✓Q = ✓P : the slope of s+ is identical at all point (straight line)

The angle ✓ + µ decreases: the characteristics diverge and form a fan
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Method of characteristics

Formation of a shock wave

Let us consider an incoming flow following a curved (concave)
surface, the characteristics converge

The characteristics from the same
family might therefore intersect

Such an intersection indicates the
breakdown of the method of
characteristics, because there would
be too much information to
calculate the flow quantities at the
point of intersection

In reality, the intersection of characteristics in not possible, it rather
indicates the appearance of a shock wave

As opposed to characteristics, shocks are patching lines for
discontinuous flows
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Method of characteristics

In practice, finite-volume representation
In the finite-volume representation of the method of characteristics,
the solution, supposed piecewise constant over elementary cells, is
obtained as follows:

Divide the Cauchy arc � into a number of segments on which the flow
conditions are assumed to be constant
Approximate by straight lines the characteristics emanating from the
segment edges
Based on the characteristics, define a set of elementary cells on which
the flow quantities will be determined
Compute the slopes of the characteristics

On s�: ⌫(M3) + ✓3 = ⌫(M1) + ✓1

On s+: ⌫(M3)� ✓3 = ⌫(M2)� ✓2

) (
⌫(M3) = ⌫(M1)+⌫(M2)

2
+ ✓1�✓2

2

✓3 = ⌫(M1)�⌫(M2)
2

+ ✓1+✓2
2

) (
�13 = ✓1+✓3

2
+ µ1+µ3

2

�23 = ✓2+✓3
2

� µ2+µ3
2
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Method of characteristics

When characteristics hit physical boundaries
Wall: flow angle imposed
Free jet: pressure and thus Mach number imposed (provided that
isentropic assumption is valid)

Example: wall

On s+: ⌫(M3)� ✓3 = ⌫(M2)� ✓2

✓3 = ✓wall

)
⌫(M3) = ⌫(M2) + ✓wall � ✓2

)
�23 = ✓2+✓3

2
� µ2+µ3

2
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Exercises: exact theory of oblique shocks / expansion waves
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Exercises: exact theory of oblique shocks / expansion waves

Exercise: forces on 2D airfoils

Consider a symmetrical diamond-shaped airfoil flying at an angle of attack to the free stream of
8� when the upstream Mach number is 2. The atmospheric pressure of the free stream is equal
to 101,325 Pa. The ratio of the thickness t to the chord c of the airfoil is equal to 0.1.

Calculate the lift and drag forces exerted on the airfoil assuming that the chord is equal to 1m
(R = 287 J/ (kg K), � = 1.4, T1 = 188K).
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Exercises: exact theory of oblique shocks / expansion waves

Solution

The airfoil half-angle � is determined from � = arctan(t/c) = 5.7106�

The pressure coe�cient for region i = 1, 2, 3, 4 is defined as

Cpi =
pi � p1
1
2
⇢1u21

=
2

�M2
1

(
pi

p1
� 1)

The forces exerted on the airfoil in the local reference frame are

T = (p1 + p3 � p2 � p4)l sin� =
�M2

1p1

2

t

2
(Cp1 + Cp3 � Cp2 � Cp4)

N = (p1 + p2 � p3 � p4)l cos� =
�M2

1p1

2

c

2
(Cp1 + Cp2 � Cp3 � Cp4)
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Exercises: exact theory of oblique shocks / expansion waves

The lift and drag forces exerted on the airfoil in the flow reference
frame are L = �T sin↵+ N cos↵

D = T cos↵+ N sin↵

Region 1: oblique shock theory
Deflection angle ✓ = 8� + � = 13.7106�

Shock-wave angle: � = 43.6598�

Normal Mach: Mn1 = 1.3807
Static pressure: p1/p1 = 2.0575
Pressure coe�cient: Cp1 = 0.377

Static temperature: T1
T1

=
h
1 + 2�

�+1
(M2

n1 � 1)
i 

2+(��1)M2
n1

(�+1)M2
n1

�
= 1.2422

Normal Mach number: M2
n1 =

1+ ��1
2

M2
n1

�M2
n1� ��1

2

= 0.7479

Tangentiel Mach number: Mt1 = Mt1
q

T1
T1

= 1.2982

Mach number: M1 =
q

M2
n1 +M2

t1 = 1.4982

Region 2: Prandtl-Meyer expansion
Mach number: ⌫(M2) = ⌫(M1) + 2� = 23.2734� ) M2 = 1.8889

Static pressure: p2
p1

=

✓
1+ ��1

2
M2

1

1+ ��1
2

M2
2

◆ �
��1

) p2
p1

= p2
p1

p1
p1

= 1.1436

Pressure coe�cient: Cp2 = 0.051
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Exercises: exact theory of oblique shocks / expansion waves

Region 3: Prandtl-Meyer expansion
Mach number: ⌫(M3) = ⌫(M1) + ↵� � = 28.6684� ) M3 = 2.0844

Static pressure: p3
p1

=

✓
1+ ��1

2
M2

1
1+ ��1

2
M2

3

◆ �
��1

= 0.8766

Pressure coe�cient: Cp3 = �0.0441

Region 4: Prandtl-Meyer expansion
Mach number: ⌫(M4) = ⌫(M3) + 2� = 40.0896� ) M4 = 2.5417

Static pressure: p4
p1

=

✓
1+ ��1

2
M2

1
1+ ��1

2
M2

4

◆ �
��1

= 0.4292

Pressure coe�cient: Cp4 = �0.2039

Forces

CT = 1
2

t

c
(Cp1 + Cp3 � Cp2 � Cp4) = 0.05(0.377� 0.0441� 0.051 + 0.2039) = 0.02429

CN =
1

2
(Cp1 + Cp2 � Cp3 � Cp4) = 0.5(0.377 + 0.051 + 0.0441 + 0.2039) = 0.338

T =
�M2

1p1

2
CT = 6891 N/m2

N =
�M2

1p1

2
CN = 95 893 N/m2
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Exercises: exact theory of oblique shocks / expansion waves

L = �T sin↵+ N cos↵ = 94 001 N/m2

D = T cos↵+ N sin↵ = 20 170 N/m2

For a supersonic inviscid flow over an infinite wing, the drag per unit span
is finite. This wave drag is inherently related to the loss of total pressure
and increase of entropy across the oblique shock waves created by the
airfoil.
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